PLC Programming
O

As PLCs developed and expanded, programming
languages have developed with them.

The three types of programming languages used in
PLCs are:

ladder

Boolean
Grafcet

In this chapter, we will concentrate on ladder
programming

Ladder Language

PLC Ladder Circuit

*Mote: The PLC will know the elements PB, L5, FS, and FL by their
addresses once the address assignment has been performed.

Figure 9-1. Hardwired logic circuit and its PLC ladder language implementation.

Boolean Language

L1 Hardwired Circuit L2

SOL1
L31 LS2

I

PB1
-1
—0

Boolean Program
L1
40 SOL1

Displayed as ladder diagram

0 M 40
12 ‘

Figure 9-3. Hardwired logic circuit and its Boolean representation.

L2

IF LS1 anD
LS2 LS1 LS2 CR1

[] ~H O

PE1 CR1 SOL1

— PE3 —
Software PE2
_I Translator —

—I LS4 PE3 LS4 TMR1 o
—J M2

— PB2

Grafcet PLC Ladder Language

Figure 9-5. Grafcet translation.

Ladder Diagram Format

O

 The main functions of a ladder diagram &)rog}“am are to control outputs
and perform functional operations based on input conditions.

o Ladder diagrams use rungs to accomplish this control.

 Arung consists of a set of input conditions (represented by contact
instructions) and an output instruction at the end of the rung
(represented by a coil symbol).

L1 Input Output Le
Conditions Instructions
| | | | | | | | Y
11 1 1 | Ny
| | | | | |
11 | 11
—————————————— P m e == »

A continuous path is required for logic continuity

» A ladder rung is TRUE
(i.e., energizing an
output or functional
instruction block) when
it has logic continuity.

» Logic continuity exists
when power flows
through the rung from
left to right.

Ladder Diagram Format

O

* When a ladder diagram) |
contains a functional A

block, contact .

| Qutput f‘\

i

"

instructions are used to «©
represent the input
conditions that drive

(or enable) the block’s
logic.

B

Tlme Enable

.

Tlme Preset

I N

Figure 9-9. Functional block instructions with (a) one enable line and one output and
(b) one enable line, a start timing command, and two outputs.

Ladder relay

Timing

Counting

Program/flow control
Arithmetic

Data manipulation

Data transfer

Special function (sequencers)
Network communication

Ladder relay instructions are the most basic
instructions in the ladder diagram instruction set.

These instructions represent the ON/OFF status of
connected inputs and outputs.

Ladder relay instructions use two types of symbols:
contacts and coils.

Contacts represent the input conditions that must be
evaluated in a given rung to determine the control of the
output.

Coils represent a rung’s outputs

Ladder Relay Instructions

@

Ladder Relay Instructions
(Purpose: To provide hardwired relay capabilities in a PLC)

Instruction Symbol Function
Examine-ON/Normally Tests for an ON condition in a
Open reference address

Tests for an OFF condition in a
reference address

Examine-OFF/Normally
Closed

Turns real or internal outputs ON

Output Coil when logic is 1

Turns real or internal outputs

NOT Output Coll OFF when logic is ‘1

Latch Output Coil Keeps an output ON once it is
energized

Unlatch Output Coil Resets a latched output

?PPROY

One-Shot Output @ Ern::;rsg;zes an output for one scan
Closes for one scan when its

Transitional Contact —|T I— trigger contact makes a positive
transition

Table 9-2. Ladder relay instructions.

Examine ON / Normally Open

0 OFF
(no continuity)

0210

|_

1 10
1 ON
(continuity)

Examine OFF / Normally Closed

a

{} OFF
(continuity)

=

02

1 ON
(no continuity)

Output Coil

10

0 OFF
(Output OFF)

L1 L2
0310 0310 PL
N 7
(b) /N

10

10N
(Output ON)

Figure 9-19. (a) An output coil instruction with a logic O reference address and (b) an
output coil instruction with a logic 1 reference address.

Output Coil

g
p—y

Figure 9-20. Normally open and normally closed contacts driving real and internal
output coils.

Not Output Coil

O

A B Y
N Y = I:.r"ﬂ- +C:|'-' B
/
C
Y =(A+C)eB
=(A+C)+B
Figure 9-21. Ladder rung for Example 9-3. =(AeC)+B
A C Y A B Y
| | ' -
W O v
B C
/lr/i’
I
Y Z
Figure 9-22, Implementation of Figure 9-27 using a NOT cail. H O Z=Y

Figure 9-23. Implementation of the NOT ¥logic without a NOT cail.

Latch and Unlatch Output Coil

O

» A latch coil instruction causes an
output to remain energized even
if the status of the contacts that
caused the output to energize
changes. 10

e The latched output will remain
ON until it is unlatched by an 11
unlatch output instruction. | |

©z Oz

e An unlatch coil instruction resets
a latched output with the same
reference address.

Figure 9-24. Latch and unlatch coil instructions.

One-Shot Output

O

» A one-shot output instruction operates in a manner similar to an output
coil instruction—if the ladder rung has continuity, the one-shot output
will be energized (ON). However, the length of time that a one-shot
output is ON is one scan

Scan 1121314151617 18191
| | |

I
A I I
B
N) I i
I N B o
n Ed
— @ B T T T T T T T ge
Lo R
N I l R I I
Y os Trailing
— One Edge
Scan
(a) (b)

Figure 9-26. (a) A one-shot output instruction and (k) its timing diagram.

Transitional Contact

Leading Edge

Trailing Edge

Figure 9-27. Leading- and trailing-edge transitional contact instructions and their
timing diagrams.

The processor starts solving aladder grogrqm after it has
read the status of all inputs and stored this information in
the input table.

The solution starts at the top of the ladder program,
beginning with the first rung and proceeding one rung at a
time.

As the processor solves the control program, it examines
the reference address of each programmed instruction, so
that it can assess logic continuity for the rung being solved.

Even if the output conditions in the rung being solved affect
previous rungs, the processor will not return to the previous
rung to resolve it.

Scan Evaluation

Figure 9-29. Ladder rung where the outputs turn ON in different scans.

c
m
0
w
]
£
@
Wi
£
=
@]
c
5
2
u
=
=
5
5]
™
o
£
o
=
=
[==
]
=
3
]
bhy
[2]
g
3
=
L.

Normally Open / Normally Closed
O

L1 L2 L1 L2
PB1 10 10 100 100 \PL1/
(a)
ON SN

L1 L2

L1 L2
PB1
(b) Pushed 10 10 100 100 \PL1/
PN

Figure 8-35. Power flow through the circuit shown in Figure 9-33 with (a) PB1 not pushed

and (b) PE1 pushed.

L1 L2

LI LS
PB1
Pushed 10 10 100 100 \PU/
(b)
2| ¢
OFF 7N

Figure 9-34. Power flow through the circuit shown in Figure 9-32 with (a) PB1 not pushed
and (b) PB1 pushed.

Normally closed stop push button programmed as
normally open

Stat qp 10 11 100 100 Motar
L

Stop 11 100
L

(@) The normally closed stop push button is programmed as normally open. Contact
100 is used as an interlock with the start push button after the start is pushed.
When the start push button is pressed, the motor turns ON,

stat 49 1 11 100 100 Motor

3 — O €>—®—
Stop 11 100

, —

(b) After the start push button is pressed and released, the motor remains ON.

Start 10 1 100 Motor

T o 11 100

+—s O +€>—@—
Stop 11 100

2l —

(e) Ifthe stop push button is pressed when the motor is ON, the motor will turn OFF,

5_‘|h;rt 10 100 Motaor

Stop 11

L

(d) If the stop push button connection breaks when the maotor is ON, the mator will
turn OFF.

Normally open stop push button programmed as

normally closed

Start 10 10 11 100
L

Sto

SR 1 100
—

100 Motor

(@) The normally open stop push button is programmed as normally closed. When

the start push button is pressed, the motor turns ON.

1
+—a

Stop
1
—C

L

10

10

_|

100

—

10
—
100

_|

11

11

100

100

100 Motor

100 Motor

—o>—@—

(b) After the start push button is pressed and released. the motor rema

ins ON.

{e) Ifthe stop push button is pressed when the mator is ON, the motor will turn OFF.

Start 100 Motor
SHar 10 0 11 100

—
Stop 11 100

L

{d) Ifthe stop push button connection breaks when the motor is ON, pressing the
stop push button will not turn the motor OFF. This is a dangerous situation.

PL.C timers and counters are internal instructions
that provide the same functions as hardware
timers and counters.

They activate or deactivate a device after a time
interval has expired or a count has reached a preset

value.

Timer and counter instructions are generally
considered internal outputs.

Timers and Counters

O

* Timer instructions may have one or more time
bases (TB) which they use to time an event.

» The time base is the resolution, or accuracy, of the
timer.

Required Time Number of Ticks Time Base (secs)
10 sec 10 1.00
10 sec 100 0.10
10 sec 1000 0.01
MNote: Required time = (# of ticks)(Time base)

Table 9-3. Time bases,

» Timers are used in applications to add a specific amount of
delay to an output in the program.

» Counter instructions are used to count events, such as
parts passing on a conveyor belt.

» Counters, along with timers, must have two values:

Preset value is the target number of ticks or counting numbers that
must be achieved before the timer or counter turns its output ON.

Accumulated value is the current number of ticks (timer) or counts
(counter) that have elapsed during the timer or counter operation.

Timers and Counters

O

» Suppose a three AC cycle

(60 HZ) iS needed 10 TON 100
| | '
| | /
» The estimated delay of the Preset Register: Reg 1000 = 50
. Accumulated Register: Reg 1001 = xx
three cycles 1S Time Base: 0.1 sec
0 3/60 = 50 msec 100 0
| | '
| | N
e The PLC program can use a

Timer output 100 1s energized

time base of 0.01 second 5 seconds after contact 10 closes.

and count 5 ticks

Figure 9-41. Example relay ladder circuit.

Timers Instructions

O

Timer Instructions
(Purpose: To provide hardware timer capabilities ina PLC)

Instruction Symbol Function

ON-Delay Energize Energizes an output after a set time
Timer period when logic 1 exists

ON-Delay De-energize De-energizes an output after a set
Timer time period when logic 1 exists

OFF-Delay Energize Energizes an ouput after a set time
Timer period when logic 0 exists

OFF-Delay De-energize De-energizes an output after a set
Timer time period when logic 0 exists

Energizes an output after a set time
period when logic 1 exists and then
retains the accumulated value

Retentive ON-Delay
Timer

Resets the accumulated value of a

Retentive Timer Reset ; ;
retentive timer

Table 9-4. Timer instructions.

Timer Instructions

Control

O

Preset Reg
Accumulated Reg
Enable/Reset Time Base

(a) (b)

Figure 9-42. (a) Block format and (b) ladder format timer instructions.

An ON-delay energize timer (TON) output instruction either provides
time-delayed action or measures the duration for which some event
occurs.

Once the rung has continuity, the timer begins counting time-based
intervals (ticks) and counts down until the accumulated time equals the
preset time.

When these two values are equal, the timer energizes the output and
closes the timed-out contact associated with the output.

The timed contact can be used throughout the program as either a
normally open or normally closed contact.

If logic continuity is lost before the timer times out, the timer resets the
accumulated register to zero.

On-Delay Energize Timer

TON 100

'
/
Preset Reqgister: Reg 1000 = 50
Accumulated Register: Reg 1001 = xx
Time Base: 0.1 sec

100 10
| | ()
| o/

Timer output 100 is energized
5 seconds after contact 10 closes.

Figure 9-44. ON-delay energize timer instruction.

On-Delay Timers

ON-Delay Energize 0

I
|
|
1 | I ‘ I
(b) ON-Delay De-energize 0 '

| |

—> Delay ——

Figure 9-45. Timing diagram for (a) an ON-delay energize timer and (b) an ON-delay
de-energize timer.

An OFF-delay energize timer (TOF) output instruction
provides time-delayed action.

If the control line rung does not have continuity, the timer
begins counting time-based intervals until the accumulated
time value equals the programmed preset value.

When these values are equal, the timer energizes the output
and closes the timed-out contact associated with the
output.

If logic continuity occurs before the timer times out, the
accumulated value resets to zero.

Off-Delay Energize Timer

9,

TOF 100

Preset Reqgister: Reg 1000 = 50
Accumulated Reqgister: Reg 1001 = xx
Time Base: 0.1 sec

100 10

Timer output 100 15 turned ON
o seconds after contact 10 opens.

Figure 9-46. OFF-delay energize timer instruction.

Off-Delay Timers

1

(b) OFF-Delay De-energize 0
Delay

Figure 9-47. Timing diagram for (a) an OFF-delay energize timer and (b) an OFF-delay
de-energize timer.

A retentive ON-delay timer (RTO) output instruction is
used if the timer’s accumulated value must be retained even
if logic continuity or system power is lost.

If any rung path has logic continuity, the timer begins
counting time-based intervals until the accumulated time
equals the preset value.

The accumulated register retains this accumulated value,
even if power or logic continuity is lost before the timer has
timed out.

A retentive timer reset (RTR) output instruction 1s
the only way to automatically reset the
accumulated value of a retentive timer.

If any rung path has logic continuity, then this
instruction resets the accumulated value of its
referenced retentive timer to zero.

Note that the retentive timer reset address will be
the same as the retentive timer output instruction
it 1s resetting.

Counter Instructions

O

° There are tWO b - Output 1 Count = Preset
basic types of o Do
counters: those Reset QupU2 (Y s preset

that can count up
and those that N

U/ Up Counter

can count down. r e g

CTD
(b) I
W, Down Counter
Preset Reg
Accumulated Reg

CTR

O Reset Counter

Figure 9-48. (a) Elock format and (b) ladder format counter instructions.

Counter Instructions

O

Counter Instructions
(Purpose: To provide hardware counter capabiliies in a PLC)

Instruction Symbol Function

Increases the accumulated register
value every fime a referenced event
occurs

Up Counter

Decreases the accumulated register
value every time a referenced event
oCCcurs

Down Counter

Resets the accumulated value of an

Counter Reset
up or down counter

% ¢

Table 9-5. Counter instructions.

An up counter (CTU) output instruction adds a count, in
increments of one, every time its referenced event occurs.

An up counter increases its accumulated value (the count
value in its accumulated register) each time the up-count
event makes an OFF-to-ON transition.

When the accumulated value reaches the preset value, the
counter turns ON the output, finishes the count, and closes
the contact associated with the referenced output.

A down counter (CTD) output instruction decreases the
count value in its accumulated register by one every time a
certain event occurs.

Sometimes, a down counter is used in conjunction with an
up counter to form an up/ down counter, given that both
counters have the same reference registers.

For example, while an up counter counts the number of
filled bottIl)es that pass a certain point, a down counter with
the same reference address can subtract one from the
accumulated count value every time it senses an empty or
improperly filled bottle

A counter reset (CTR) output instruction resets up

counter and down counter accumulated values to
Zero.

When programmed, a counter reset coil has the
same reference address as the corresponding
up/down counter coils.

If the counter reset rung condition is TRUE, the
reset instruction will clear the referenced address.

. CTR
" Output 1 oy
utpu
I I Jp %— Count = Preset
PR: 1002 =15

1 AR: 1003 = xx

|1 Down

I

12 101

|1 Reset Output 2

| | 40— Count > Preset
100 101 102
/H/ /H/ O— Count < Preset

Figure 9-49. Counter function block with up, down, and reset counter instructions.

The counter will count up when contact 10 closes, count down when
contact 11 closes, and reset register 1003 to 0 when contact 12 closes.

If the count is equal to 15 as a result of either an up or down count, output
100 will be ON.

If contents of register 1003 are greater than 15, output 101 will be ON.
Output 102 will be ON if the accumulated count value is less than 15

Counter Example

O

» A block counter instruction
being used to count parts as
detected by a photoelectric eye

(PE) input. .
» The preset value of counts is - 2 CTR L o (Gt L2
500. F@_@. _|10 100 ' »—@—:O%
* Modify this circuit so that it will Reset.
automatically reset every time o e |
the counter reaches 500. L
o Also, add the instructions AR = e

necessary to implement an
output coil that indicates that the
count has reached 500.

Figure 9-50. Functional block counter instruction.

Counter Example

L1 L2
PE 10 10
’-ﬁ B*@ o H
Reset
1

é

1"

—|

CTR

PR =500
AR = xxx

PL
L1 (Count= L2

100 Praset)

g} N _ 7
SN

Figure 9-50. Functional block counter instruction.

L1
101

L1
101

L1 L2
P 1o 10
+{peer H
Reset
11 100
*—0 0—@—1» —|
100 101
HF————(H
1 101
HF———©
Figure 9-51. Automatically resetting counter.
L1 L2
P:E 10 10
_|
Reset
11 100
—o o—@ el
100 " 101
— F——H—O
101
— —

Figure 9-52. Solution to Example 9-7.

é} \:/
)
7N

N _ 7/
[)
VRN

PL L2
(Count =
Preset)

PL
(Count= L2
Preset)

Program / Flow Control Instructions

O

* Program/flow control
instructions direct the

flow of operations, as well S
as the execution of ﬂ
instructions, within a Flow Contro
ladder program. —H O
If the rung is TRUE, the fenced
o) |] | R
» They perform these ol R
functions using branching Cortrol
and return instructions, ~
which are executed when e \
certain already
pI‘O I‘ammed control logic Figure 9-53. A fence created using a program/flow control instruction,

conditions occur.

Program / Flow Control Instructions

7N\

Program/Flow Control Instructions
(Purpose: To direct the evaluation/execution of instructions in a ladder program)

Instruction Symbol Function

Activates/deactivates the execution

Master Control Relay of a group of ladder rungs

Zone Control Last Determines whether or not a group

State of ladder rungs will be evaluated

End ldentifies the last rung of an MCR or
ZCL instruction

Jump To Jumps to a specified rung in the

program If certain conditions exists

Goes o a specified subroutine in the

Go To Subroutine program if certain conditions exist

Identifies the target rung of a JMP

Label or GOSUB instruction

Retum Terminates a ladder subroutine

bt bbby
E

Table 9-6. Program/flow control instructions.

» These Instructions are usually used in pairs

Master Control Relay

» Activates or deactivates
the execution of a
group or zone of ladder
rungs.

* An MCR rung is used in
conjunction with an
END rung to fence a
group of rungs

O

Fenced
MCR
Zone

Auto
|

Main Control
Program

MCR 1

'
o/

END 1
M)
N

Main Control
Program

Figure 9-54. Example of an MCR instruction.

If the AUTO input closes,
MCR 1 1s energized and

the rungs inside the zone
are executed. If AUTO is
QOFF, program execution
resumes at the first rung

after the END instruction.

* Ajump to (JMP)
instruction allows the
control program sequence
to be altered if certain
conditions exist.

 If the rung condition is
TRUE, the jump to coil
reference address tells the
processor to jump forward
and execute the target
rung.

This section
is bypassed
logic not
solved

Main Control
Program

i

10 11 JMP 100

=

IMain Control
Program

i

100 12 13 300

o

IMain Control
Program

If contacts 10 and 11
close, program execution
jumps to the rung labeled
LBL 100 and continues.

Figure 9-55. Example of a jump to instruction.

A go to subroutine (GOSUB) output instruction also allows
normal program execution to be altered if certain
conditions exist.

A label (LBL) instruction identifies the ladder rung that is
the target destination of a jump to or GOSUB instruction.

A return (RET) instruction terminates a ladder subroutine
and is programmed with no conditional inputs. When the
control program encounters this instruction, it returns to
the main program.

IMain Control

Program
10 GOSUB 1
| | Y
11 Ny
11 GOSUB 2
| | 2R
| Ny

Main Control
Program

1 300

[Y

et N\
Subroutine #1 |

RET

2

Ny

2 400

[2

| \/
Subroutine #2 |

RET

P

A

If contact 10 closes, subroutine #1
Is executed. Once finished, the
processor returns to the instruction
that follows. If contact 11 closes,
subroutine #2 is executed.

The EOS (end-of-scan) signal is
triggered at the end of the control
program before the subroutine
area starts.

Main Control
Program

GOTO 100
'
Ny
Subroutine #1
Subroutine #2
.
100 . 200
| * Y
s | N\

The unconditional GOTO 100
instruction jumps control to LBL
100, which is the last instruction
in the program. Each subroutine
must have unique LBL and RET
instructions.

EOS occurs after the dummy
output (200) is executed.

Figure 9-56. PLC with assigned subroutines at the end of the program.

Figure 9-57. User-created subroutine area.

Arithmetic Instructions

Arithmetic Instructions
(Purpose: To allow PLCs to perform mathematical functions with register data)

Instruction Symbol Function

Adds the values stored in two

Addition—Ladder -
registers

Adds the values stored in two

Addition—Block -
registers

Subtracts the values stored in

Subtraction—Ladder two registers

Subtracts the values stored in

Subtraction—Block two registers

Multiplies the values stored in

Multiplication—Ladder two registers

Multiplies the values stored in

Multiplication—Block two registers

Finds the quotient of the values

Division—Ladder in two registers

Finds the quotient of the values

Division—Block DIV in two registers

Calculates the square root of a

Square Root—Block SQR register value

Table 9-7. Arithmetic instructions.

Addition

9,

ADD
- [el)
|GET| |GET] 0/
Reg X Reg Y Reg 7

Storage Area

Contents in BCD

ADD

It A closes, the contents of register X and register Y are added
and stored in register Z. If A does not close, no addition is
performed. If contact A was omitted, the addition would be

performed in every scan.

Figure 9-61. Ladder format addition.

Figure 9-62. Addition functional block.

Enable

Addition Example

O

» Two ingredients are added to a
reactor tank for mixing.

* Analog input modules, which
provide 12-bit information in Flow A

Ingredient 1 Ingredient 2

Flow B
BCD, send data about the two Reg 1000 _ Reg 1001
ingredients’ flows to the PLC.]
o The values are stored in registers)
1000 and 1001.

* Implement instructions to keep
track of the total amount of the
combined ingredients, so that
this information can be
displayed on a monitor for the
Operator, Figure 9-64. Flow of two ingredients into a reactor tank.

Addition Example

9,

Ingredient 1 Ingredient 2

Flow A Flow B
Reg 1000 Reg 1001

Reg 1000 = Ingredient A
Reg 1001 = Ingredient B
Reg 2000 = Sum of ingredients A and B

Figure 9-65. Solution to Example 9-8,

Subtraction

SuUB
10 100

| | | l | l Ja
| | |GET] |GET] 1\,
Reg: 1000 Reg: 1001 Reg: 2000

Storage Area Reqg
2 4 8 7 5 1000
1 2 6 6 1001

2 36 09 2000

Contents in
Decimal (Binary)

If contact 10 closes, the value in register 1001 is subtracted from the
value in register 1000 (Reg 1000 — Reg 1001) and the result is stored in
register 2000. If contact 10 does not close, no subtraction is performed.

Figure 9-66. Ladder format subtraction instruction.

SuUB

Control

£ Output 1: Result Positive (+)

/
7 Output 2: Result Equal (=)

/
7 Qutput 3: Result Negative (—)

Ny

Figure 9-68. Subtraction block with sign outputs.

Register 1001 contains a
constant of 0.
Register 100 overlaps
analog input.

(a)

Register 1001 contains a
constant of 0.
Register 100 overlaps
analog output.

(b)

Figure 9-69. Subtraction block used to (a) read an analog input and (b) write an

analog output.

Multiplication

10
| | | | | | |
| |GET] |GET] MUL
Reg: 1000 Reg: 1001 Reqg: 2000
2001 Control Enable
Storage Area Reg
0 2| 5 10 |1000
1 31 5 | 7 |10
Overflow
9 215 |10 |2000
0 0 3 3 |2001
Contents in BCD
Result = 00339250
Figure 9-70. Ladder format multiplication instruction. Storage Area Reg
9 0 0 1 _|1000
8 1 7 2 |1001 Temporary Storage Registers
Mult | 6 1 7 2
7 2 & 5
MUL 0l 71316 |o000 Store |
0 0 0 0 2001
Control Done or
Enable | | 5 |2200
Note: The scale value is positive
in register 2200 but interpreted
as 107 by the processor.
Overflow

Figure 9-72. Multiplication function block with scaling.

Figure 9-71. Multiplication functional block.

Division

Done or
Enable

Overflow

DIV
100
- -)

Remainder

|GET| |GET| W, .
Reg: 1000 = 8527
Reg: 1000 Reg: 1001 Reg: 2000 | Integer Reg: 1001 = 325
2001 | Fraction
Integer result in register 2000 =26
Decimal fraction in register 2001 = 2369
Figure 9-73. Ladder format division instruction. Result = 26.2369 or

Integer result in register 2000 =26
(b) Remainder in register 2001 =77
Result = 26 with a remainder of 77 (77/325)

Figure 9-74. Division functional block with the second result register storing (a) the
decimal fraction and (b) the remainder.

Square Root

Enable

Reg: 1000 =120

Square root result = 10 9544

Reg: 2000 =10 (integer)

Reg: 2001 = 9544 (decimal fraction)

Figure 9-75. Square root functional block.,

|| |1
1] 1]
Ingredient A Ingredient B

Q, = K,VAP, Q. = K.WAP,

- -=To 120 VAC Discrete
Output in PLC

Figure 9-76. Square root instruction application in a DP flow meter.

Relay-type instructions are limited to the control of
internal and external outputs based on the status of
specific bit addresses, data manipulation
instructions allow multi-bit operations.

Data manipulation instructions handle operations
that take place within one, two, or more registers.

Data Manipulation Instructions

O

Data Manipulation Instructions
(Purpase: To provide multibit, multiregister operations in a PLC)

Instruction

Symbol

Function

Data Comparison

Logic Matrix

Data Conversion

Set Constant
Parameters

Increment

Shift

Examine Bit

CMP/LIM

AND/OR/NAND
NOR/NOT/XOR

ABS/COMPL
INV/BIN-BCD

SET

INCR

SHIFT

XBON/XBOFF

Compares the values stored in
two registers

Performs logic operations on
two or more registers

Changes the value stored in a
reqgister to another format

Loads a register with a fixed
value

Increases the contents of a

register by one

Moves the bits in a register to
the right or left

Shifts register bits right/left and
moves the shifted-out bit to the
other end of the register

Examines the status of a single
bit in a memory location

Table 9-8. Data manipulation instructions.

O

* Data comparison (CMP)
instructions compare the values
stored in two registers.

» These instructions are useful
when checking for values in the
application program.

» There are three basic data
comparisons: compare equal to,
compare greater than, and
compare less than.

» Based on the results of these
comparisons, the processor can
turn outputs ON or OFF and
perform other operations.

Data Comparison

10 100
| | | I I _| Y
Reg 600 Reg 501
11 101
| | | [| _| I
1 | GET| | CMP=] /
Reqg 601 Reg 502
CMP=
Reg 502

If contact 10 closes, the contents of register 600 are compared to the contents
of register 501; if they are equal, coil 100 is turned ON. If contact 11 closes,
the contents of register 601 are compared to the contents of register 502; if
they are greater than or equal to register 502, output 101 is turned ON.

Figure 8-77. Ladder format comparisons.

Data Comparison

O

» The compare functional block
compares the contents of two
registers, register 2000 and
register 2001, for a specific _

. . . "ID CMP_ .-'I{]D
comparison, in this case, equal

to. Done/

Enable

Comparison
Satisfied

» The block instruction energizes
output coil 100 when the

comparison occurs,.and IJF Note: Other comparision functional
energizes output coil 101 if the block instructions include
comparison has been satisfied. CMP>, CMPz, CMP<,

CMP<, and CMP=.

Data Comparison

O

» Some PLCs may also have one
comparison block, which has
several outputs, that performs
multiple compare functions at
the same time. 10

CMP 100

CMP=

 This type of comparison block
compares the data in the
registers and then turns ON the
output corresponding to the
outcome of the comparison (i.e.,
less than, greater than, equal to).

CMP=

CMP<

Example

O

» Two ingredients are being
poured into a reactor tank.

Ingredient 1 Ingredient 2
» The first two lgdder rungs open Flow A “low B
the ValveS for lngredlents A and Reg 1000 Reg 1001
B, allowing them to be poured —] —
into the tank. :

e Implement an instruction block
that ensures that the valves close
when ingredient A reaches 500
gallons and ingredient B reaches
750 gallons.

Example

Ingredient 1
Flow A
Reg 1000
"
i
0"
"

Ingredient 2

Flow B
Reqg 1001

Start Adding
Ingredients Stop A Valve A
10 102 %99\
| | |
11 xf' _/
Start Adding
Ingredients Stop B Valve B
10 104 %Q{
| 1 |
| zI/II/ _/
Reg 1000 100
+ I
Reg 1001 —/
Start Adding ~ 1ed 2000
Ingredients
10 CMP> 101
| | I
11 Reg 1000 /
K500 102
Start Adding O
Ingredients 103
10 CMP>
| 1 Y
| Reg 1001 -/
104
K750 N\
o/

Figure 9-81. Solution to Example 9-9.

Enable

CMP Satisfied
(Ingredient A)

Enable

CMP Satisfied
(Ingredient B)

* A logic matrix functional block
performs AND, OR, exclusive-
OR, NAND, NOR, and NOT logic
operations on two or more
registers. Logic Function

. 10 (AND, OR, NOT) 100

» The block specifies the type of N Reg 1000)

logic function to be performed, ! el T ~
while the user specifies the Reg 2000
registers inside the block. Length 01

* In this example, registers 1000
and 1100 hold the operand
values, while register 2000 holds
the result of the operation.

Figure 9-82. Logic matrix functional block.

Logic Function
(AND, OR, NOT)

| | Reg 1000
Reg 1100
Reg 2000
Length 01

Ok

Figure 9-82. Logic matrix functional block.

17161514 131211107 6 54 3 2 1 0
|1000110100101001RegiSTer (Reg 1000)

AND
|DOOO11‘I1OODOOOODMGSK (Reg 1100)

|D olofof1|1|/0|1|0|0|0|0O]0O|0| 0|0} Resultafter (Reg 2000)
logical AND

Only bits passed
(Others are masked out)

Figure 9-83. Logic matrix function block used to mask out bits.

Logic Matrix

O

Reg 1000 Holds data to be masked
Reg 1100 Holds mask
Reg 2000 Holds resulis

Holding Mask Result
Register Reqister Reqgister

Logic
| AND | |

Figure 9-84. Logic matrix function block example.

» Data conversion
instructions change the
contents of a given _oc
register from one A
format to another. w oco—an |

100
| I
1 Reg 1000 _/

» Typical data conversion ‘
instructions include B e comersin
BCD-to-binary, binary-
to-BCD, absolute,
CcO mplement, and Figurs 9-85. BCD-to-binary data conversion
Inversion.

(0]
[N
o]

o[oo oot o108

loJo[o[1[o] 1] 1]o][1]1]1]o] 1[o]e] 5876 binary)

Set Constant Parameter

9,

Done/Enable

After Execution Reg 1000 = 3,456

Figure 9-89. Set constant parameters functional block.

Increment

Before Execution Reg 1000 = 123
After Execution Reg 1000 = 124

Figure 9-90. Increment functional block.

Shift-in Bit MSB Register X LSB
D‘IO‘IO‘]O101D‘I[}‘IO1I

Shift —— (Right)

Before

MSB Register X LSB Shift-out Bit

1101110 1]Of1)0]1]0|1]0]1]0 DI—>

—

Shift —— (Right)
After

Figure 9-81. Right-shift execution.

MSB Register X LSB
Rotate
—pl 1| 0| 1|0 1|O]1|O]1|O[1[O|T]0O]1 '[JI—D;J[_OLIt

Rotate — (Right)

Before

R MSB Reqgister X LSB
otate
bit-in —pi 0| 1|0|1]0O[1]O|1]O|1][O[1|]0]1]|0 ‘II—

Rotate — (Right)

After

Figure 9-92. Right-rotate execution.

Shift and Rotate

10 shift 100 10 ROT 100

Bit in or out can be a real I/O address
or a bit in a register

(a) (b)
Figure 9-93. (a) Shift and (b) rotate functional blocks.

Reg 1000

Reg 1002

T1O1 11O 1O 1|01 110p1)0p1{0j1]0

Shift Length = 3 (48 bits)
of Bits =
Shiftin Bit =0

Figure 9-94. Example of a right-shift instruction.

Examine Bit

9,

XBON/XBOFF

Examines bit 10 of register 1000 for an
ON (XBON) or an OFF (XBOFF) status.

Figure 9-95. Examine bit functional block.

A PLC application controls a
batching process where the
reading of a temperature input
(Batch Temp) is critical to the
process.

The process’s temperature
transducer is connected to a
four-channel, 0—10 VDC analog
input module with a 12-bit
resolution.

The remaining four bits of each
g:hapnel are used as status
indicators for the module.

Illustrate how to test for a fault
in this analog input interface’s
critical temperature
measurement.

Analog Input
I Q§ 14)
Batch Temp Channel 0: To Reqgister 1000
1B
A 24 !
Cooler Temp Channel 1: To Register 1001
2B
_ = 34 .
Boiler Temp Channel 2: To Register 1002
(|28
44|
No Connection{ Channel 3: Not Used
L 48

Channel OK (ON)
Overflow (ON)

Underflow (ON)

Sign (ON = (-), OFF = (+))

31211107 6 54 3210

=

17 16 15 14 -

| Reg 1000

12-bit analog data
in BCD format

Figure 9-96. Analog input interface for a batching application.

» By testing bit 17 of
register 1000 (which is
the deStinatiO]fl Of the Analog

S Module XBOFE

critical temperature Enablc 10
1 I = __J

reading channel) for an Reg 1000

OFF condition Bit 17

o If bit 17 1s OFF, a fault
has occurred; if it is
ON, the channel is OK.

Figure 9-97. A fault has occurred if register 1000 bit 17 is 0 (OFF).

» Data transfer
instructions move, or
transfer, numerical data
within a PLC, either in o AD
single register units or in ! P !
blocks (a group of y .

Reg 1000 Reqg 1001 Reg 2000

registers). | F——eer| O
Reg 2000 Reg 3000
® A GET data tranSfeI' If contact 10 closes, the contents of registers 1000 and 1001
. . dded and stored i ister 2000. If contact 11 c . th
lnStI'UCthIl aCCQSSQS data zgit?antse ofa ?egiss‘gf 2&)%[283;2 etrransferredc?g’[;rced} inctt? Srzsg'istﬁer
f o . 3000. The contents of register 2000 are not altered.
rom a certain register,

WhereaS a PUT instruction Figure 9-98. GET and PUT instructions used in the ladder format.
stores data in a specified
register.

Data Transfer Instructions

O

Data Transfer Instructions
(Purpose: To move numerical data within a PLC)

Instruction Symbol Function
Move MOV/MOVB/ Transfers information from one
MOVE/MOWVM location to another
Move Block MOVBK l‘u’lnw?ﬁ data from a group gf register
locations to another location
Table Move REG-TABLE/ Transfers data from a block or
TABLE-REG table to a reqgister
Block Transfer— BKXFER Stores a block f::f datain _speclﬂed
In/Out memory or register locations
ASCII Transfer ASCII XFER Transmits ASCI| data between a
peripheral device and a PLC
First In—First Out Constructs a table or queue for
FIFO)
Transfer storing data
Sort SORT Sorts the data in a block of registers

in ascending/descending order

Table 9-9. Data transfer instructions.

10

_|

Status of bit 15 of register 1000 Is Contents of reqister 1000 are
moved to bit 07 of register 2000 moved to register 2000 (destination
register can be an /O reqgister)

(a) (b)
Figure 9-99. (a) Move bit and (b) move register functional blocks.

MOVE Mask

Reg: 1000 = 0110 1000 1001 0101

Reqg: 2000 = 0000 0000 1111 0000 Mask
Reg: 1100 = 0000 0000 1001 0000

only bits passed

Move with mask

Figure 9-100. Move mask functional block.

MOVE Block

Reg 2000
Reg 2001

Reg 1023 Reg 2023

Figure 9-101. Move block functional block.

Special Functions Instructions

9,

Special Function Instructions
(Purpose: To allow specialized operations in a PLC)

Instruction Symbol Function

Sequencer SEQ Outputs data in a time-driven
or event-driven manner

: . Compares actual input data
Diagnostic DIAG with reference data

Froportional-Integral- Provides closed-loop control
L PID
Derivative of a process

Table 9-10. Special function instructions.

Network Communication Instructions

O

Network Communication Instructions
(Purpose: To allow communication through a local area network)

Instruction Symbol Function

NET Passes one-bit status information

Network Output from a PLC to a network

NET Captures status information from
Network Contact S }_ a network output

Sends register information to a

Network Send NET SEND network
Network Receive NET RCV _Captures available reqister data
in a network
Sends register data to a specific
Send Node SEND NODE node in a network
Get Node GET NODE Retrieves reqgister data from a

specific node in a network

Table 9-11. MNetwork communication instructions.

